Graph Partitioning and Parallel Solvers:
Has the Emperor No Clothes?*
(Extended Abstract)

Bruce Hendrickson

Sandia National Labs, Albuquerque, NM 87185-1110

Abstract. Sparse matrix-vector multiplication is the kernel for many
scientific computations. Parallelizing this operation requires the matrix
to be divided among processors. This division is commonly phrased in
terms of graph partitioning. Although this abstraction has proved to
be very useful, it has significant flaws and limitations. The cost model
implicit in this abstraction is only a weak approximation to the true
cost of the parallel matrix-vector multiplication. And the graph model is
unnecessarily restrictive. This paper will detail the shortcomings of the
current paradigm and suggest directions for improvement and further
research.

1 Introduction

Over the past several years, a comfortable consensus has settled upon the com-
munity concerning the applicability of graph partitioning to the parallelization
of explicit methods and iterative solvers. This consensus is largely the result
of two happy occurrences. First is the availability of good algorithms and soft-
ware for partitioning graphs, motivated by parallel computing applications (eg.
Chaco [2], METIS [5], JOSTLE [11], PARTY [10] and SCOTCH [9]). Second is
the excellent parallel efficiencies which can be obtained when solving differential
equations. Clearly, the latter is a consequence of the former, right?

Yes, and no. Although the Emperor may not be completely naked, he is
wearing little more than his underwear. The graph partitioning abstraction is
seriously flawed, and its uncritical adoption by the community has limited in-
vestigation of alternatives. The standard partitioning approach suffers from two
kinds of shortcomings. First, it optimizes the wrong metric. And second, it is
unnecessarily limiting. These shortcomings will be discussed in detail below. The
purpose of this paper is to elucidate these failings, and to suggest some improve-
ments and directions for further research. More generally, I hope to stimulate
renewed interest in a set of problems that has been erroneously considered to be
solved.

* In Proc. Irregular "98, (©Springer-Verlag.This work was funded by the Applied Math-
ematical Sciences program, U.S. Department of Energy, Office of Energy Research
and performed at Sandia National Laboratories, operated for the U.S. DOE under
contract number DE-AC04-76 DP00789.

2 Matrices, Graphs and Grids

Before discussing the problems with graph partitioning in detail, it will be helpful
to review the relationship between grids, matrices and graphs. A grid or mesh is
the scaffolding upon which a function is decomposed into simple pieces. Standard
techniques for solving differential equations represent their solutions as a union
of simple functions on the pieces the grid. The grid determines the nonzero
structure of the corresponding sparse matrix, but the relationship between the
grid and the matrix can be complex. The solution values can be associated with
grid points, or with grid regions. Multiple unknowns per grid point lead to block
structure in the matrix. A nonzero value in the matrix might occur for each
pair of grid points which are connected by an edge. Alternatively, a nonzero
might occur if two grid points share a region. More complicated relationships
are also possible. But an important point is that the matrices associated with
computational grids are usually structurally symmetric. That is, if element [i, j]
is nonzero, then so is element [j,1].

The standard graph of a symmetric n x n matrix has n vertices, and an edge
connects vertices ¢ and j if matrix element [i, j] is nonzero. Note that this graph
is generally not identical to the grid, although the two are related. Also note
that every symmetric matrix has a graph, whether or not it has a corresponding
grid.

For parallelizing iterative solvers, three graphs are commonly used.

1. The standard graph of the (symmetric) matrix.
2. The grid.

3. The dual of the grid. That is, each region becomes a vertex and two vertices
are connected if their corresponding regions are adjacent to each other

Each of these graphs has its advantages and disadvantages. The graph of the
matrix is unambiguous and always available for symmetric matrices. But if the
matrix is never explicitly formed, the graph may be difficult to construct. And
if there are multiple unknowns per grid point, then the graph of the matrix may
be unnecessarily large.

The grid does not suffer from the problem of multiple unknowns, and so can
be a smaller representation of the basic structure of the matrix. However, as
discussed above, it only approximates the structure of the matrix. Also, if the
matrix doesn’t come from a grid-based differential equation, then there may be
no grid to use.

The dual of the grid has the same advantages and disadvantages as the grid,
and its construction requires some nontrivial effort on the part of the user. How-
ever, as will be discussed in §4, when the standard graph partitioning approach
is used, the dual is often a better model of communication requirements than
the grid itself.

3 Parallel Matrix-Vector Multiplication

For sparse matrices, the standard approach to parallelizing matrix-vector mul-
tiplication involves dividing the rows of the matrix among the processors. Each
processor is responsible for computing the contributions from the matrix values
it owns. Consider forming the product y = Az on p processors. The rows and
columns of A are divided into p sets, and the elements of x and y are divided
in the same way. As we will discuss below, graph partitioning is only applicable
to structurally symmetric matrices, so for the remainder of this section we will
assume that A is structurally symmetric. Conceptually, the partitioning can be
thought of as a symmetric reordering of the rows and columns of A, and also
of z and y, followed by an organization of A into block structure as illustrated
below.

A A - Alp
Aoy Agy -+ A2p (1)
Apl Ap? T App

Processor i begins with segment i of £ and computes segment i of y. It has
all the necessary elements of z to compute the contribution from its diagonal
block A;;. To compute the contribution of off-diagonal blocks, processor i needs
some z values from other processors. Specifically, if A(k,l) € A;; is nonzero,
then processor i needs z(l) from processor j. This exchange of elements of x is
all the communication required to form the matrix-vector product.

Several important observations are in order. First, the block structure of A
can be interpreted in terms of the standard graph of the matrix of A. Since each
row of A is a vertex in the graph, the block structure induces a partitioning of
the vertices into p sets. Second, the total number of nonzero values in A4;; is
equal to the number of edges in the graph which connect vertices in partition
i to those in partition j. Third, the number of z values that processor j must
send to processor i is equal to the number of vertices in partition 7 which have
neighbors in partition 7. We will call vertices which have neighbors on other
processors boundary vertices.

Explicit solvers have exactly the same communication pattern as matrix-
vector multiplication. Consequently, all the issues discussed here are relevant to
them as well.

It is worth noting that the same row-wise partitioning of the matrix can also
be used to efficiently compute 2 = A" w. This is useful for nonsymmetric matrices
since many iterative methods for such matrices require both matrix-vector and
matrix-transpose-vector products. Details can be found in [3].

4 Problems with Graph Partitioning

The standard graph partitioning problem addressed by codes like Chaco [2] and
METIS [5] is the following. Divide the vertices of the graph into equally sized

sets in such a way that the number of edges crossing between sets is minimized.
(This formulation can be generalized to consider weights on the vertices and
edges, but details are beyond the scope of this paper.) The construction of an
appropriate graph is the responsibility of the user, and typically one of the three
graphs described in §2 is used. By limiting the number of edges crossing between
sets, the off-diagonal blocks of the matrix have few nonzeros. Thus, in matrix
terms, graph partitioning methods try to put most of the nonzero values in the
diagonal block. This is clearly advantageous for limiting the communication,
but unfortunately, the number of cut edges is not the most important thing to
minimize. The inappropriateness of this metric are discussed in §4.1, while more
general limitations of the graph partitioning model are described in §4.2.

4.1 Problems With Edge Cuts
Minimizing edge cuts has three major flaws.

A. Although widely assumed to be the case, edge cuts are not proportional
to the total communication volume. Obviously, this depends on the graph
presented to the partitioner. If the graph is the standard graph of the matrix
then, as discussed in 3, the communication volume is instead proportional
to the number of boundary vertices. It is for this reason that the dual of
the grid is often used as the graph to partition. Edges in the dual roughly
correspond to pairs of boundary vertices in the grid. But the dual may be
difficult to construct, and is not defined for general matrices. It would be
better to have a partitioner that works directly with the structure of the
matrix and tries to minimize an accurate model of the communication cost.

B. Sending a message on a parallel computer requires some startup time (or
latency) and some time proportional to the length of the message. Graph
partitioning approaches try to (approximately) minimize the total volume,
but not the total number of messages. Unfortunately, in all but the largest
problems, latencies can be more important than volume.

C. The performance of a parallel application is limited by the slowest proces-
sor. Even if all the computational work is well balanced, the communication
effort might not be. Graph partitioning algorithms try to minimize the to-
tal communication cost. However, optimal performance will be obtained by
instead minimizing the maximum communication cost among all processors.
In some applications it is best to minimize the sum of the computation and
communication time, so imbalance in one can be offset in the other. The
standard graph partitioning approaches don’t address these issues.

With these problems, why has the standard graph partitioning approach
proved so successful for the parallel solution of differential equations? There are
two reasons. First, grid points generally have only a small number of neighbors.
So cutting a minimal number of edges ensures that the number of boundary
vertices is within a small multiple of the optimal. This isn’t true of more gen-
eral matrices. Also, well structured grids have good partitions. If the number of

processors is kept fixed while the problem size increases, latencies become unim-
portant and the computational work for a matrix-vector multiplication should
grow linearly with n, while the communication volume should only grow as n?/3
in 3D and n'/2 in 2D. Thus, very large problems should exhibit excellent scalabil-
ity, even if the partition is nonoptimal. For more general matrices, this inherent
scalability doesn’t hold true, and the quality of the partition matters much more.

4.2 Limitations of Graph partitioning

Besides minimizing the wrong objective function, the standard graph partition-
ing approach suffers from several limitations, all reflective of a lack of express-
ibility of the model.

A. Only square, symmetric matrices. In the standard graph model, a single
vertex represents both a row and a column of a matrix. If the matrix is not
square, then the model doesn’t apply. Also, in the standard model the single
edge between i and j can’t distinguish a nonzero in location (i.j) from one
in location (j,4). So even square matrices aren’t handled well if they are not
symmetric.

B. Only symmetric partitions. Since a single vertex represents both a row
and a column, the partition of the rows is forced to be identical to the
partition of the columns. This is equivalent to forcing the partition of y to
be identical to the partition of z in y = Axz. If the matrix is symmetric, then
this restriction simplifies the operation of an iterative solver. However, for
nonsymmetric solvers, this restriction is unnecessary.

C. Ignores the application of the preconditioner. Preconditioning can
dramatically improve the performance and robustness of iterative solvers.
In a preconditioned iterative method, the matrix-vector product is only one
part of a larger operation. For some preconditioners (eg. Jacobi) optimal
performance of y = Az will lead to good overall performance. But for more
complex preconditioners it is better to consider the full calculation instead
of just the matrix-vector product. Unfortunately, the standard graph model
has no capacity to consider the larger problem.

5 A Better Combinatorial Model

Some of the limitations discussed in §4.2 can be addressed by a more expressive
model proposed by Kolda and Hendrickson [3, 4, 8]. The model uses a bipartite
graph to represent the matrix. In this graph, there is a vertex for each row and
another vertex for each column. An edge connects row vertex i to column vertex
j if there is a nonzero in matrix location [i, j]. The structure of nonsymmetric and
nonsquare matrices can be unambiguously described in this way, which addresses
limitation (A).

The row vertices and column vertices can now each be partitioned into p
sets, which corresponds to finding a p x p block structure of the matrix. An edge

between a row vertex in partition ¢ and a column vertex in partition j corresponds
to a nonzero value in off-diagonal block A4;;. By minimizing such edges, most
of the nonzero values will be in the diagonal blocks. The same matrix-vector
multiplication algorithm sketched above can now be applied. The partition of =
will correspond to the column partition of A, while the partition of y reflects A’s
row partition. The freedom to have different row and column partitions removes
limitation (B).

The freedom to decouple row and column partitions has an additional ad-
vantage. Consider the case where two matrices are involved, so y = BAz. In [3],
Hendrickson and Kolda show that the row partition can be used to get good
performance in the application of A, while the column partition can optimize
the application of B. So if a preconditioner is explicitly formed as a matrix (eg.
approximate inverse preconditioners), then the bipartite partitioning problem
can model the full iteration. This is a partial resolution of limitation (C).

Although the bipartite model is more expressive than the standard model,
the algorithms in [3] still optimize the flawed metric of edge cuts.

6 Conclusions and Directions for Further Research

Despite the success of the standard graph partitioning approach to many paral-
lel computing applications, the methodology is flawed. Graph partitioning min-
imizes the wrong metric, and the graph model of matrices is unnecessarily lim-
iting. A bipartite graph representation resolves some of the limitations, but a
number of important open questions remain.

1. More accurate metric. The principle shortcoming of standard graph par-
titioning is that the quantity being minimized does not directly reflect the
communication cost in the application. Unfortunately, minimizing a more
appropriate metric is challenging. Boundary vertices, the correct measure of
communication volume, are harder to optimize than edge cuts. A good refine-
ment algorithm which works on this quantity would be a significant advance.
More generally, the true communication cost in a parallel matrix-vector mul-
tiplication operation is more complex than just total volume. The number
of messages can be at least as important as the volume, but graph partition-
ing algorithms seem ill suited to addressing this quantity directly. Similarly,
since the processors tend to stay synchronized in an iterative solver, the
maximum communication load over processors is more important than the
total. These issues have received insufficient attention.

2. Matrix and preconditioner. As discussed in §4.2, the matrix-vector mul-
tiplication is generally only a piece of a larger operation. Methodologies that
optimize a full step of the iterative solver would be better. The bipartite
model described in §5 is an improvement, but much work remains to be
done.

3. Multicriteria partitioning. In many parallel applications there are several
computational kernels with different load balancing needs. In many of these

situations, the individual kernels are synchronized so for peak performance
each kernel must be load balanced. A simple example is the application of
boundary conditions which only occurs on the surface of a mesh. A good
partition for such a problem will divide the problem in such a way that each
kernel is balanced. In the boundary condition example, each processor should
own a portion of the surface of the mesh, and also of the full volumetric mesh.
This important problem has not yet received sufficient attention, but some
researchers are beginning to address it [7].

4. Partitioning for domain decomposition. Domain decomposition is a
numerical technique in which a large grid is broken into smaller pieces. The
solver works on individual subdomains first, and then couples them together.
The properties of a good decomposition are not entirely clear, and they de-
pend upon the details of the solution technique. But they are almost certainly
not identical to the criteria for matrix-vector multiplication. For instance,
Farhat, et al. [1] argue that the domains must have good aspect ratios (eg.
not be long and skinny). It can also be important that subdomains are
connected, even though the best partitions for matrix-vector multiplication
needn’t be. For the most part, practitioners of domain decomposition have
made due with partitioning algorithms developed for other purposes, with
perhaps some minor perturbations at the end. But a concerted effort to de-
vise schemes which meet the need of this community could lead to significant
advances.

5. Parallel partitioning. Most of the work on parallel partitioning has been
done in the context of dynamic load balancing. But several trends are in-
creasing the need for this capability. First is the interest in very large meshes,
which won’t easily fit on a sequential machine and so must be partitioned
in parallel. Second, for a more subtle reason, is the growing interest in het-
erogeneous parallel architectures. Generally, partitioning is performed as a
preprocessing step in which the user specifies the number of processors the
problem will run on. With heterogeneous parallel machines, the number of
processors is insufficient the partitioner should also know their relative
speeds and memory sizes. A user will want to run on whatever processors
happen to be idle when the job is ready, so it is impossible to provide this
information to a partitioner in advance. A better solution is to partition on
the parallel machine when the job is initiated. A number of parallel parti-
tioners have been implemented including Jostle [11] and ParMETIS [6]. This
is an active area of research

Despite the general feeling that partitioning is a mature area, there are a
number of open problems and many opportunities for significant advances in
the state of the art.

Acknowledgements

The ideas in this paper have been influenced by many discussions with Rob
Leland and Tammy Kolda. I have also benefited from conversations with Ray

Tuminaro, David Day, Alex Pothen and Michele Benzi.

References

1.

7.

8.

C. FARHAT, N. MAMAN AND G. BROWN, Mesh partitioning for implicit computation
via domain decomposition: impact and optimization of the subdomain aspect ratio,
Int. J. Num. Meth. Engrg. 38 (1995), pp. 989 1000.

. B. HENDRICKSON AND R. LELAND, The Chaco user’s guide, version 2.0, Tech. Rep.

SAND95-2344, Sandia Natl. Lab., Albuquerque, NM, 87185, 1995.

B. HENDRICKSON AND T. G. KoLDA, Parallel algorithms for nonsymmetric itera-
tive solvers. In preparation.

, Partitioning Sparse Rectangular Matrices for Parallel Computation of Ax and
ATy, In Lecture Notes in Computer Science, Springer-Verlag, 1998. Proc. PARA’98.
To appear.

. G. KaArypis AND V. KUMAR, A fast and high quality multilevel scheme for partition-

ing irreqular graphs, Tech. Rep. 95-035, Dept. Computer Science, Univ. Minnesota,
Minneapolis, MN 55455, 1995.

——, Parallel multilevel graph partitioning, Tech. Rep. 95-036, Dept. Computer
Science, Univ. Minnesota, Minneapolis, MN 55455, 1995.

———, Multilevel algorithms for multi-constraint graph partitioning, Tech. Rep. 98-
019, Dept. Computer Science, Univ. Minnesota, Minneapolis, MN 55455, 1998.

T. G. KoLDA, Partitioning sparse rectangular matrices for parallel processing. In
Proc. Irregular’98, 1998.

F. PELLEGRINI, SCOTCH 8.1 user’s guide, Tech. Rep. 1137-96, Laboratoire Borde-
lais de Recherche en Informatique, Universite Bordeaux, France, 1996.

10. R. Preis, R. DiEKMANN, The PARTY Partitioning-Library, User Guide - Version

1.1, Tech. Rep. tr-rstb-96-024, University of Paderborn, Paderborn, Germany, 1996.

11. C. WALsHAW, M. Cross, AND M. EVERETT, Mesh partitioning and load-balancing

for distributed memory parallel systems, in Proc. Parallel & Distributed Computing
for Computational Mechanics, Lochinver, Scotland, 1997, B. Topping, ed., 1998.

This article was processed using the IXTEX macro package with LLNCS style

